Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering
نویسندگان
چکیده
Normal mixture models are widely used for statistical modeling of data, including cluster analysis. However maximum likelihood estimation (MLE) for normal mixtures using the EM algorithm may fail as the result of singularities or degeneracies. To avoid this, we propose replacing the MLE by a maximum a posteriori (MAP) estimator, also found by the EM algorithm. For choosing the number of components and the model parameterization, we propose a modified version of BIC, where the likelihood is evaluated at the MAP instead of the MLE. We use a highly dispersed proper conjugate prior, containing a small fraction of one observation’s worth of information. The resulting method avoids degeneracies and singularities, but when these are not present it gives similar results to the standard method using MLE, EM and BIC.
منابع مشابه
A Bayesian mixture model for classification of certain and uncertain data
There are different types of classification methods for classifying the certain data. All the time the value of the variables is not certain and they may belong to the interval that is called uncertain data. In recent years, by assuming the distribution of the uncertain data is normal, there are several estimation for the mean and variance of this distribution. In this paper, we co...
متن کاملmclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation
mclust is a contributed R package for model-based clustering, classification, and density estimation based on finite normal mixture modeling. It provides functions for parameter estimation via the EM algorithm for normal mixture models with a variety of covariance structures, and functions for simulation from these models. Also included are functions that combine model-based hierarchical cluste...
متن کاملAdvanced mixtures for complex high dimensional data: from model-based to Bayesian non-parametric inference
Cluster analysis of complex data is an essential task in statistics and machine learning. One of the most popular approaches in cluster analysis is the one based on mixture models. It includes mixture-model based clustering to partition individuals or possibly variables into groups, block mixture-model based clustering to simultaneously associate individuals and variables to clusters, that is c...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملOn Model-Based Clustering, Classification, and Discriminant Analysis
The use of mixture models for clustering and classification has burgeoned into an important subfield of multivariate analysis. These approaches have been around for a half-century or so, with significant activity in the area over the past decade. The primary focus of this paper is to review work in model-based clustering, classification, and discriminant analysis, with particular attenti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Classification
دوره 24 شماره
صفحات -
تاریخ انتشار 2007